Lockwood Elevation

Elevation simplified

Elevation is flexible solution that caters for many types of applications. This document highlights simplified colour wire connections as well as advanced functions for special tailored solutions. These drawings are the same as provided on the web and that comes with the product but more simplified and broken down by application.

Elevation can be connected to a "home automation" system also referred to as Cbus. Other names include BMS (Building Management System) Etc. Elevation can be connected to Fire alarms panels that automatically close or open in the event of fire. Elevation can be connected to 24 v Backup systems, and be controlled in the event of a power failure or fire

Other sensors i.e. Temperature, wind and air-conditioners can also be connected to Elevation. Please see the relevant section in the contents for detailed explanation and how Elevation can be configured to your building.
Table of Contents Page
Specification Guide - Standalone 4
Standalone Floor plan Example5
Specification Guide - Keypad 6
Keypad Floor plan Example 7
Power Supply options8
Cbus connection 10
$3^{\text {rd }}$ Party sensors 11
Standalone or Switch connection 12
Standalone or Switch connection (Multiple) 13
Sync Connection 14
Rain sensor used with wall switch connection 15
Multiple Rain sensor connection 16
Touchscreen connection 17
Keypad Network Limitations 18
Standalone Network Limitations 19
Cable types 20
Frequently asked questions 21

Specification Guide - Standalone

1) Specfify actuators for single windows Example

> | Specify 1 actuator per window that's less than 900 mm wide | |
| :---: | :---: |
| LW-EWAC- 300 - BLK | LW-EWAC- 300 -WH |
| LW-EWAC-300-PPC | |
| 22 | 0 |

2) Specfify actuators for double windows

Specify 2 actuators per window that's wider than 900 mm			
LW-EWAC- 300-BLK	LW-EWAC-300-WH	LW-EWAC-300-PPC	LW-EWAC- 300-BLK
\bigcirc	\bigcirc	\bigcirc	\bigcirc

3) Add 1 Sync Loom for each pair of actuators that's synqed

4) Specify a power supply for actuators

$$
\text { Note : } 22 \times \text { Power supplies will operate } 22 \text { windows }
$$

5) Specify how many wall Switches

Note: 1 Network adaptor required per wall switch
6) Specify how many rain sensors (4 Maximum)

7) Specify a power supply for Network Adaptor

Total Requirement

Part\#	Qty
LW- EWAC- 300- BLK	22
EWAC-SSL	0
EWAC-SPS1000	23
EWAC-SNA	6
EWAC-SRS	0

Standalone Floor plan Example

\checkmark Elevation Window	\square	1000 mA Power Supply (operate 1 Unit
Δ Wall Switch (network adaptor)	\square	1500 mA Power Supply (operate 2 units)

Note: Depending on the user requirements wall users may require several wall switches or 1 or all windows 1 Network adaptor is required per wall switch

Specification Guide - Keypad

1) Specfify actuators for single windows Example

Specify 1 actuator per window that's less than 900mm wide				
LW-EWAC- 300-BLK				
10				

2) Specfify actuators for double windows

3) Add 1 Sync Loom for each pair of actuators that's synqed

4) Specify a power supply for actuators

Note: $8 \times$ Power supplies will operate 16 windows
5) Specify how many keypads (2 Maximum)

6) Specify how many rain sensors (4 Maximum)

7) Specify a power supply for rain sensors and Keypad

Enough to operate:
4 rain sensors and 2
keypads \qquad
Total Requirement

Part\#	Qty
LW-EWAC- 300-BLK	16
EWAC-SSL	3
EWAC-SPS1500	9
LW-TSD-35-WHT	2
EWAC-SRS	4
EWAC-SPS1000	0

6

Power Supply options

Elevation is powered by a 24 vDC power supply. Power supplies need to be ordered separately. The electrician normally decides what type of power supply they want to use, there are three options;

Option 1

Elevation consumes 750 mA at peak draw. The electrician can choose to use $1 \times 1000 \mathrm{~mA}$ power supply per Elevation actuator and connected as per Fig1.

Fig 1
Option 2
The electrician can choose to use $1 \times 1500 \mathrm{~mA}$ power supply, for every 2 Elevation actuators and loop the connection. This can be connected as per Fig2.

Fig 2

Option 3

The electrician can choose to use a $3^{\text {rd }}$ party Power supply to power multiple Elevation actuators. Each actuator uses 750 mA and this needs to be taken in account. 5000 mA will be enough to loop to 6 Elevation actuators.

Connection using this supply

below

One large power supply can be used for multiple actuators.
Each actuator draws 750 mA
Consider voltage drop for large cable runs Refer to below table

LENGTH (m)	WIRE \varnothing MIN	AWG
12	0.7 mm	22
19	0.8 mm	20
29	1.0 mm	18
47	1.3 mm	16
74	1.6 mm	14
119	2.0 mm	12

INPUT VOLTAGE	24 V DC
MAXIMUM CURRENT	750 mA Per Actuator
OPENING TIME	Approx 40 sec
OVERALL DIMENSIONS	$308 \mathrm{~mm} \times 44 \mathrm{~mm} \times 32 \mathrm{~mm}$
OPERATING TEMPERATURE	$0^{\circ}-50^{\circ} \mathrm{C}$
HUMIDITY	$0 \%-95 \%$
NETWORK CABLE LENGTH	300 m MAX

Fig 3

Cbus connection

Elevation can be controlled with any home automation controller (cBus) a Network adaptor is required to interface with your Cbus system. If windows need to be controlled independently you require 1 Network adaptor per cbus output. 1 relay will trigger open and 1 the close.

If connected to fire panels the above connection is required.

Fig 4

$3^{\text {rd }}$ Party sensors

Wind Sensors

Wind sensors can be programmed to trigger when the wind reaches a certain speed. Example; if a medium to high winds are in effect, the wind sensor can trigger and open/close the windows automatically.
These output connections from the wind sensor can be connected to the network Adaptor and connected as per the Fig 4

Temperature Sensors

Temperature sensors can be programmed to trigger when temp reaches a certain threshold. Example would be if too cold temperature is reached, the sensor can trigger and open/close the windows automatically.
These output connections from the temperature sensor can be connected to the network Adaptor and connected as per the Fig 4

Air conditioners

Some air conditioners can be programmed to trigger when the air-conditioner switches on or off. Example would be the air conditioner could trigger a relay when switched off and automatically open the windows. It can be taken a step further and temperature sensors can monitor the outside temperature and allow the air-conditioner to switch off and allow cold air to flow in.
O^{2} Sensors
Modern buildings may be equipped with O^{2} Sensors these sensors can be programmed to trigger when O^{2} levels are low and these triggers can control Elevation to open. These can work in conjunction with above sensors creating the ultimate 6 star energy efficient building

Possibilities are endless and Elevation offer the ideal solution to reach a "greener" rated building. Connections as per Fig 4 will allow this function.

These sensors are typically used with a Cbus system and can also be used as a standalone, when used in conjunction to Standalone connection (not Keypad network)

Standalone or Switch connection

Elevation can be connected to a wall switch. A 2 button bell press (Open \& Close) is required
Connections below

Fig 5

Standalone or Switch connection (Multiple)

It's possible to connect multiple wall switches to the Elevation network so that windows can be opened from multiple locations in the building. Each switch will control all windows on that network.

Note: If individual windows need to be controlled they need to be setup on their own network
Fig 6

Sync Connection

For large windows (900 mm and wider) an Elevation unit can be synchronized. A Sync loom is required and connection as per Fig 7

Fig 7

Rain sensor used with wall switch connection

A rain sensor can be connected to a wall switch network. If connected as below the windows will automatically close in the event of rain. Up to 4 rain sensors can be connected to the network.

Fig 8

Multiple Rain sensor connection

Multiple rain sensors can be connected to a keypad or wall switch network. If connected as below the windows will automatically close in the event of rain. Up to 4 rain sensors can be connected to the network.

Fig 9

Touchscreen connection

If the touchscreen is preferred to control your windows follow the below connections. Maximum 2 Keypads per network

ELEVATION TOUCH SCREEN CONNECTION

Keypad Network Limitations

Network capacity is 32 devices, each of the above counts as 1 device

Example 1

$31 \times$ Single Actuators
$0 \times$ Double Actuators
1 x Keypad (2 Max)
$0 \times$ Rain Sensor

Example 4

$28 \times$ Single Actuators
$0 \times$ Double Actuators
$2 \times$ Keypad (2 Max)
2xRain Sensor (4Max)

Example 2

$0 \times$ Single Actuators
$31 \times$ Double Actuators
$1 \times$ Keypad
$0 \times$ Rain Sensor

```
Example 5
27 x Single Actuators
0x Double Actuators
1x Keypad (2 Max)
4x Rain Sensor (4 Max)
```


Example 3

$10 \times$ Single Actuators $20 \times$ Double Actuators
1 x Keypad (2 Max)
$0 \times$ Rain Sensor

```
Example 6
14x Single Actuators
12x Double Actuators
2x Keypad (2 Max)
4x Rain Sensor (4Max)
```


Standalone Network Limitations

Network Adaptor / Suitch

Network capacity is 32 devices, each of the above counts as 1 device

Example 1

31 x Single Actuators
$0 \times$ Double Actuators
$1 \times$ Network Adaptor/ Switch
$0 x$ Rain Sensor

Example 4

$28 x$ Single Actuators
$0 \times$ Double Actuators
$2 \times$ Network Adaptor / Switch
$2 \times$ Rain Sensor

Example 2

$0 \times$ Single Actuators
31 x Double Actuators
$1 \times$ Network Adaptor / Switch
$0 x$ Rain Sensor

Example 3

$10 \times$ Single Actuators
$21 \times$ Double Actuators
$1 \times$ Network Adaptor / Suitch
$0 x$ Rain Sensor

Example 5

$27 \times$ Single Actuators
$0 \times$ Double Actuators
$1 \times$ Network Adaptor / Suitch
$4 \times$ Rain Sensor

Example 6

$10 \times$ Single Actuators
0x Double Actuators
$1 \times$ Network Adaptor / Switch
$0 \times$ Rain Sensor

Cable types

The power and network cables required are different

Power cables

Depending on the distance of the power cables the following cable gauge needs to be adhered to;

LENGTH (m)	WIRE \varnothing MIN	AWG
12	0.7 mm	22
19	0.8 mm	20
29	1.0 mm	18
47	1.3 mm	16
74	1.6 mm	14
119	2.0 mm	12

Network cable

Ensure Standard CAT5 Shielded Cable is used for 2 wire network bus. (Limit to 300 m)
(All non-power connections)

Frequently asked questions

Question Topics

1. What products to order
2. System Limitations
3. Technical help
4. Fault find Checklist

What products to order

1. Question: The customer needs a standalone unit, what part number do they need to order?
2. Answer: With regards to the elevation system, both the keypad and standalone units are the same. If the customer needs a standalone unit, they will need to order a Network adaptor separately as well. Any of the Elevation Actuator part numbers can be ordered (finish dependent)
3. Question: What switches will work with a standalone unit and do we sell them?
4. Answer: We don't supply switches but they are "standard non-latching bell press switches". You need two switches one for opening and one for closing. HPM or Clipsal offer a range of these switches
5. Question: If the customer needs to connect the Elevation to a Cbus system, what does he need to buy?
6. Answer: All that's required is 1 network adaptor per dual relay output and one dual relay output can control up to 31 actuators
7. Question: The customer needs a keypad unit, what part number do they need to order?
8. Answer: With regards to the elevation system both the keypad and standalone units are the same. Any of the Elevation Actuator part numbers can be ordered (finish dependent)
9. Question: What power supply should the customer order considering it does not come with one.
10. Answer: Power supplies are now supplied separately; often the electrician will supply his own transformers. But if they want to buy them from us they can buy two types:
$1000 \mathrm{~mA}=$ enough to power 1 actuator (EWAC-SPS1000)
$1500 \mathrm{~mA}=$ enough to power 2 actuators (EWAC-SPS1500)
11. Question: Do we sell a battery backup system
12. Answer: No but any 3rd party battery backup system can be used as long as it's 24 v DC

System limitations

7. Question: How many actuators can be controlled with one switch unit? (standalone)
8. Answer: One switch unit can control up to 31 Actuators, so 1-31 actuators
9. Question: How many actuators can be controlled with a keypad?
10. Answer: One keypad can control 31 devices so if no rain sensors are connected they can control 31 actuators. If for example there is 1 rain sensor connected, it counts as an device and they can only connect 30 actuators.
11. Question: If I have a unit synchronized on a large window, does this count as 1 or 2 ?
12. Answer: Any synchronized units count as 1 unit
13. Question: Can a second or third keypad be connected to the network
14. Answer: You can add a second keypad to the network but not a 3rd, 2 keypads are the maximum limit
15. Question: How many rain sensors can be added to the system?
16. Answer: You can connect up to 4 rain sensors to the network

Technical Help

12. Question: What network cable should be used?
13. Answer: Standard figure 8 Network cable is recommended (0.7mm AWG22)
14. Question: How far can I run the network cable before I get voltage drop?
15. Answer: If standard figure 8 network cable is used, it can be run to 300 m
16. Question: How far can I run the power supply cable to the actuator?
14.Answer: Voltage drop occurs if long power cables are used we recommend the following gauge cable chart, depending on the distance.

Power Cable Requirements

LENGTH (m)	WIRE \varnothing MIN	AWG
12	0.7 mm	22
19	0.8 mm	20
29	1.0 mm	18
47	1.3 mm	16
74	1.6 mm	14
119	2.0 mm	12

15. Question: What is the maximum weight of the window the Elevation actuator can handle?
15.Answer: Window weight does not affect the performance but rather window height and width. Refer to Elevation window matrix
16. Question: What is the preferable wiring method?
17. Answer: Daisy chain connection

Fault find checklist

Check in the following order;

Mechanical Checklist

- Check window size matrix
- Check if non friction stays are used
- Check if window can be opened manually by hand
- Is pivot bracket installed (if required by the matrix)

Electrical Checklist

- Ensure cables are plugged in connections are correct
- Check if correct cable type and gauge is used
- Check if the $2 \times$ resistors are connected on each end of the network
- Standalone: Make sure maximum 31 actuators per switch

